
Image processing for gesture

recognition: from theory to practice

Michela Goffredo

University Roma TRE

goffredo@uniroma3.it
1

What’s Computer Vision?

2

Why study Computer Vision?
� Images and video are everywhere!

3

Personal photo albums

Surveillance and security

Movies, news, sports

Medical and scientific images

What’s Computer Vision?

� Computer vision is the transformation of data from a still or video
camera into either a decision or a new representation.

� All such transformations are done for achieving some particular goal.

� The input data may include some contextual information such as “the
camera is mounted in a car” or “laser range finder indicates an object is
one meter away”.one meter away”.

� The decision might be “there is a person in this scene” or “there are 14
tumor cells on this slide”.

4

Origins of computer vision

L. G. Roberts, Machine Perception of
Three Dimensional Solids, Ph.D. thesis,

5

Three Dimensional Solids, Ph.D. thesis,
MIT Department of Electrical
Engineering, 1963.

Connections to other disciplines

Machine Learning

Artificial Intelligence

Robotics

6

Computer Vision

Image Processing

Psychology
NeuroscienceComputer Graphics

What’s Computer Vision?

� How hard can it be to find, say, a car when you are staring at it in an image?

� The human brain divides the vision signal into many channels that stream
different kinds of information into your brain. Your brain has an attention
system that identifies, in a task-dependent way, important parts of an image
to examine while suppressing examination of other areas. There is massive
feedback in the visual stream that is, as yet, little understood.feedback in the visual stream that is, as yet, little understood.

� There are widespread associative inputs from muscle control sensors and
all of the other senses that allow the brain to draw on cross-associations
made from years of living in the world. The feedback loops in the brain go
back to all stages of processing including the hardware sensors themselves
(the eyes), which mechanically control lighting via the iris and tune the
reception on the surface of the retina.

7

Perceive the “world behind the picture”

� In a machine vision system, however, a computer receives a grid of numbers
from the camera or from disk, and that’s it.

� Data is corrupted by noise and distortions: from variations in the world
(weather, lighting, reflections, movements), imperfections in the lens and
mechanical setup, finite integration time on the sensor (motion blur),
electrical noise in the sensor or other electronics, and compression
artifacts…8

What’s Computer Vision?

� In the design of a practical system, additional contextual knowledge can
often be used to work around the limitations imposed on us by visual
sensors.

� The actions or decisions that computer vision attempts to make based on
camera data are performed in the context of a specific purpose or task.

� General rule: the more constrained a computer vision context is, the more� General rule: the more constrained a computer vision context is, the more
we can rely on those constraints to simplify the problem and the more
reliable our final solution will be.

� What exactly does this mean?

� Vision as a source of metric 3D information

� Vision as a source of semantic information

9

Vision as measurement device

Real-time stereo Structure from motion
Multi-view stereo for
community photo collections

10

NASA Mars Rover

Pollefeys et al. Goesele et al.

Vision as a source of semantic information

11

Object categorization

sky

building

flag

12

wall
banner

bus

cars

bus

face

street lamp

Scene and context categorization

Outdoor
City
Traffic…

13

Qualitative spatial information

slanted

non-rigid moving

14

rigid moving
object

horizontal

vertical

rigid moving
object

non-rigid moving
object

Challenges: viewpoint variation

15

Michelangelo 1475-1564

Challenges: illumination

16

image credit: J. Koenderink

Challenges: scale

17

slide credit: Fei-Fei, Fergus & Torralba

Challenges: deformations

18

Xu, Beihong 1943

Challenges: occlusions

19

Magritte, 1957

Challenges: background clutter

20

Challenges: object intra-class variation

21

Challenges: local ambiguity

22

� Images are confusing, but they also reveal the structure of the world
through numerous cues

� Our job is to interpret the cues!

� i.e. Linear perspective, texture gradient,…

Challenges or opportunities?

23

� Shape and lighting cues: Shading

Challenges or opportunities?

24

� Grouping cues: Similarity

(color, texture, proximity, shape…)

Challenges or opportunities?

25

Applications

Factory inspection Monitoring for safetyReading license plates,

26 More info: http://people.cs.ubc.ca/~lowe/vision.html

Factory inspection Monitoring for safety
(Poseidon)

Reading license plates,
checks, ZIP codes

Driver assistanceSurveillance Autonomous driving,
robot navigation

Applications

Assistive technologies Entertainment Movie special effects

27 More info: http://people.cs.ubc.ca/~lowe/vision.html

Assistive technologies Entertainment
(Sony EyeToy)

Movie special effects

Digital cameras (face detection for setting focus,
exposure)

Visual search
(MSR Lincoln)

Applications

� A famous application by using not only cameras…

28

Applications

29

Litterature

30

� An image may be defined as a two-dimensional function, f(x, y), where x and y are
spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is
called the intensity or gray level of the image at that point.

� When x, y, and the amplitude values of f are all finite, discrete quantities, we call the
image a digital image.

Digital images and processing

31

� The field of digital image processing refers to processing digital images by means
of a digital computer.

� A digital image is composed of a finite number of elements, each of which has a
particular location and value.These elements are referred to as picture elements,
image elements, pels, and pixels.

� Coordinate convention to represent digital images:

Digital images and processing

32

� Sampling and Quantization

An image may be continuous with respect to the x- and y-coordinates, and also in
amplitude.

To convert it to digital form, we have to sample the function in both coordinates and in
amplitude.

Digitizing the coordinate values is called sampling.

Digital images and processing

Digitizing the coordinate values is called sampling.

Digitizing the amplitude values is called quantization.

33

� Spatial and Gray-Level Resolution

Spatial resolution is the smallest discernible detail in an image: the smallest number
of discernible line pairs per unit distance; for example, 100 line pairs per millimeter.

Digital images and processing

Four representations of the

34

Four representations of the
same image, with variation in
the number of pixels used:
a) 256x 256;
b) 128 x128;
c) 64x 64;
d) 32 x 32.

� Spatial and Gray-Level Resolution

Gray-level resolution refers to the smallest discernible change in gray level.

Digital images and processing

Four representations of the

35

Four representations of the
same image, with variation in
the number of grey levels
used:
a) 32;
b) 16;
c) 8;
d) 4.

� Color imaging

Most real-world images are not monochrome, of course, but full color!

Digital images and processing

� Images from digital cameras are usually in Red Green Blue (RGB) colorspace since
according to the three color theory of Thomas Young, all the colors are perceived
by our visual system as linear combination of the basic colors.

� A number of color spaces or color models have been suggested and each one of
them has a specific color coordinate system and each point in the color space
represents only one specific color

� Each color model may be useful for specific applications. For our purposes…

36

� HSV colorspace

Cylindrical-coordinate representations of points in an RGB color model, which
rearrange the geometry of RGB in an attempt to be more perceptually relevant
than the cartesian representation.

HSV stands for hue, saturation, and value:

Digital images and processing

� Hue represents color. It is an angle from 0 degrees to 360 degrees.

� Saturation indicates the range of grey in the color space. It ranges from 0 to 100%.
When the value is ’0,’ the color is grey and when the value is ’1,’ the color is a
primary color.

� Value is the brightness of the color and varies with color saturation. It ranges from
0 to 100%. When the value is ’0′ the color space will be totally black. With the
increase in the value, the color space brightness up and shows various colors.

37

� HSV colorspace

Example: skin detection using HSV colorspace

Digital images and processing

Thresholds: H(0-20); S (30-150);V(80-255)

38

What is OpenCV?

� OpenCV is an open source computer vision library available from
http://SourceForge.net/projects/opencvlibrary

� The library is written in C and C++ and runs under Linux, Windows and
Mac OS X.

� There is active development on interfaces for Python, Ruby, Matlab, and
other languages.other languages.

39

� One of OpenCV’s goals is to provide a simple-
to-use computer vision infrastructure that helps
people build fairly sophisticated vision
applications quickly.

What is OpenCV?

� The OpenCV library contains over 500 functions that span many areas in
vision, including:

� factory product inspection,

� medical imaging,

� security,

� user interface,� user interface,

� camera calibration,

� stereo vision,

� robotics.

� There is a Yahoo groups forum where users can post questions and
discussion at http://groups.yahoo.com/group/OpenCV; it has about 20,000
members.

40

Let’s start!

1. Install OpenCV library

OpenCV-2.1.0-win32-vs2008.exe (Version 2.1 is more stable…)

to a folder (without any spaces in it), say "C:\OpenCV2.1\".

We’ll refer to this path as $openCVDir

During installation, enable the option "Add OpenCV to the system PATH
for all users".

2. Open Visual Studio 2008 and configure it

41

Visual Studio 2008 configuration

� Tools > Options > Projects and Solutions > VC++ Directories

� Choose "Show directories for: Include files"

� Add "$openCVDir\include\opencv“

� Choose "Show directories for: Library files"

Add "$openCVDir\lib“� Add "$openCVDir\lib“

� Choose "Show directories for: Source files"

� Add "$openCVDir\src\cv"

� Add "$openCVDir\src\cvaux"

� Add "$openCVDir\src\cxcore"

� Add "$openCVDir\src\highgui”

42

Visual Studio 2008 Project dependencies

3. Create a new project WIN32 and add the OpenCV dependencies

� Open Project Properties: Project > %projectName% Properties...

� Open Linker Input properties: Configuration Properties > Linker > Input

� Open the "..." window to edit "Additional Dependencies" and on each
line put:line put:

� "cv210.lib"

� "cxcore210.lib"

� "highgui210.lib“

� And any other lib file necessary for your project

43

Our very first program

Try it! copy – paste – build - run – see

#include "highgui.h“

int main()

{

Cue: put the image in the same directory!

44

{

char* path=" "start.jpg";

IplImage* img = cvLoadImage(path);

cvNamedWindow("Example1", CV_WINDOW_AUTOSIZE);

cvShowImage("Example1", img);

cvWaitKey(0);

cvReleaseImage(&img);

cvDestroyWindow("Example1");

}

Documentation

Documentation can be found in the .../opencv/docs subdirectory.

Moreover, the OpenCV Wiki is available on the Web:

http://opencv.willowgarage.com/documentation/

and it’s structured as follow:

� CXCORE: Contains data structures, matrix algebra, data transforms, object
persistence, memory management, error handling, and dynamic loading of code aspersistence, memory management, error handling, and dynamic loading of code as
well as drawing, text and basic math.

� CV: Contains image processing, image structure analysis, motion and tracking,
pattern recognition, and camera calibration.

� Machine Learning (MLL): Contains many clustering, classification and data analysis
functions.

� HighGUI: Contains user interface GUI and image/video storage and recall

� CVCAM: Camera interface.

45

OpenCV Structure and Content

OpenCV is broadly structured into 5 main components,

46

OpenCV Structure and Content

HighGUI allows us to interact with the operating system, the file system, and hardware
such as cameras.

With HighGUI we can quite easily open windows; display images; read and write
graphics-related files (both images and video); handle simple mouse, pointer, and
keyboard events.; create useful stuff like sliders and then add them to windows…

It can be divided into 3 parts:

47

Hardware File System GUI

HighGUI

OpenCV Structure and Content

Hardware File System GUI

HighGUI

48

operation of cameras: in most
operating systems, interaction
with a camera is a tedious and
painful task. HighGUI allows an
easy way to query a camera and
retrieve the latest image from the
camera. It hides all of the nasty
stuff , and that keeps us happy.

loading and saving images

functions that will allow us to open a window and throw
an image into that window. It also allows us to register
and respond to mouse and keyboard events on
that window.

CXCORE: Primitive Data Types

OpenCV data types are not primitive from the point of view of C, but they are all
simple structures, and we will regard them as atomic:

� CvScalar: container for 1-,2-,3- or 4-tuples of doubles.

� CvPoint: (x,y) integer points in image

� CvPoint2D32f: (x,y) float points in ℜ2

ℜ

49

CvPoint2D32f: (x,y) float points in ℜ

� CvPoint3D32f (x,y,z) float points in ℜ3

� CvSize: (width, height) integer size of image

� CvRect: (x, y, width, height) integer portion of image (rectangle)
Example: a white rectangle between pixels (5, 10) and (100, 100);

Images and matrices

� When using OpenCV, you will repeatedly encounter the IplImage data type.

� IplImage is the basic structure used to encode what we generally call “images”.

� Images may be grayscale, color, four-channel (RGB+alpha), and each channel may
contain any of several types of integer or floating point numbers.

� IplImage is derived from the matrix type (CvMat), which is derived from the
array type (CvArr):

50

array type (CvArr):

So, let’s see what CvMat is like

Matrices

CvMat

� there is no “vector” construct in OpenCV. Whenever we want a vector, we just use
a matrix with one column (or one row, if we want a transpose or conjugate
vector).

Routine that creates a new 2D matrix:

51

Routine that creates a new 2D matrix:

� type can be any of a long list of predefined types of the form:

CV_<bit_depth>(S|U|F)C<number_of_channels>

CV_32FC1: 32-bit floats;

CV_8UC3: unsigned integer 8-bit 3-channels

Matrices

� Create and allocate a matrix
CvMat* cvCreateMat(int rows, int cols, int type)

void cvCreateData(CvMat* mat);

� Clone a matrix
mat_new=cvCloneMat(mat);

52

� Accessing matrix data
elemtype CV_MAT_ELEM(CvMat*, elemtype, row, col)

� Clean up
cvReleaseMat(&mat);

Example:

Images

IplImage is a CvMat with some extra goodies buried in it to make the matrix
interpretable as an image.

RELEVANT ONES
nSize: sizeof(IplImage)
nChannels: Number of channels
Depth: Pixel depth in bits. The supported depths are:

IPL_DEPTH_8U - Unsigned 8-bit integer
IPL_DEPTH_8S - Signed 8-bit integer

53

IPL_DEPTH_8S - Signed 8-bit integer
IPL_DEPTH_16U - Unsigned 16-bit integer
IPL_DEPTH_16S - Signed 16-bit integer
IPL_DEPTH_32S - Signed 32-bit integer
IPL_DEPTH_32F - Single-precision floating point
IPL_DEPTH_64F - Double-precision floating point

Origin: IPL_ORIGIN_TL or IPL_ORIGIN_BL
Width: image width in pixels
Height: Image height in pixels
Roi: Region Of Interest. If not NULL, only this region will be
processed.
imageSize: Image data size in bytes
imageData: A pointer to the aligned image data
widthStep: The size of an aligned image row, in bytes
imageDataOrigin: A pointer to the origin of the image data

Images

� Allocate an image
IplImage* cvCreateImage(CvSize size, int depth, int channels)

54

� Load an image
img=cvLoadImage(fileName);

� Clone an image
img_new=cvCloneImage(img);

� Save an image
cvSaveImage(fileName,img);

� Clean up
cvReleaseImage(&img);

� Accessing Image Data

There isn’t an Opencv function to do that. We need to computes a pointer as the head
of the relevant row and then move it to the relevant column by considering the
widthStep.

Example: max out (saturate) only the “G” and “B” channels of an RGB image

Images

55

RGB image

The pointer prt scans
each row

widthStep contains the number of
bytes between points in the same
column and successive rowsBecause this is a 3-channel image, the

location of channel c is 3x+c

Images

56

i.e.
Change channel green and blue
of pixel (3,3)

Cool! I’m on the correct row

But there’re 3 channels…

3 3 3

Y=0
Y=1
Y=2
Y=3

HIGHGUI: Windows

As we’re working with images, we need to display them. The Highgui section of
Opencv includes some routines for managing windows and displaying images.

� Create a window
int cvNamedWindow(const char* name, int flags)

name is the name of the window; suggested flag: CV_WINDOW_AUTOSIZE

57

� Move a window
void cvMoveWindow(const char* name, int x, int y)

name is the name of the window; x,y is the offset from the UL corner of the screen

� Display an image
void cvShowImage(const char* name, const CvArr* image)

name is the name of the window; image is the image to be shown

� Close a window and clean up
void cvDestroyWindow(const char* name)

void cvDestroyWindow(const char* name) or
void cvDestroyAllWindows(void)

Example 1

� Now we can understand the test-program we run previously…

� Load an image from disk and displays it on the screen

58

WaitKey

� Waitkey causes OpenCV to wait for a specified number of milliseconds for a user
keystroke. If the key is pressed within the allotted time, the function returns the key
pressed; otherwise, it returns 0.

Example: tell OpenCV to wait 100 ms for a key stroke

while(1) {

59

while(1) {

if(cvWaitKey(100)==27) break;

}

ASCII value 27 is the Escape key

Another example:

cvWaitKey(0)

It will wait indefinitely until a keystroke is received and then return that key.

HIGHGUI: Videos

Playing a video with OpenCV is almost as easy as displaying a single picture.
CvCapture is the video capturing structure.

� Initializing capture from a file
CvCapture* cvCaptureFromFile(const char* filename)

� Initializing capture from a camera

60

� Initializing capture from a camera
CvCapture* cvCaptureFromCAM(0)

0 value grabs frames from the default camera

� Grab and return a frame from a camera or file
IplImage* cvQueryFrame(CvCapture* cap)

� Get capture device properties
double cvGetCaptureProperty(CvCapture* cap, int property_id)

Videos

� Get capture device properties
double cvGetCaptureProperty(CvCapture* cap, int property_id)

Property identifier. Can be one of the following:

CV_CAP_PROP_POS_MSEC: Film current position in milliseconds or video capture timestamp
CV_CAP_PROP_POS_FRAMES - 0-based index of the frame to be decoded/captured next
CV_CAP_PROP_POS_AVI_RATIO - Relative position of the video file (0 - start of the film, 1 -

61

CV_CAP_PROP_POS_AVI_RATIO - Relative position of the video file (0 - start of the film, 1 -
end of the film)

CV_CAP_PROP_FRAME_WIDTH - Width of the frames in the video stream
CV_CAP_PROP_FRAME_HEIGHT - Height of the frames in the video stream
CV_CAP_PROP_FPS - Frame rate
CV_CAP_PROP_FOURCC - 4-character code of codec
CV_CAP_PROP_FRAME_COUNT - Number of frames in the video file
CV_CAP_PROP_BRIGHTNESS - Brightness of the image (only for cameras)
CV_CAP_PROP_CONTRAST - Contrast of the image (only for cameras)
CV_CAP_PROP_SATURATION - Saturation of the image (only for cameras)
CV_CAP_PROP_HUE - Hue of the image (only for cameras)

Videos

� Release the capture source
void cvReleaseCapture(CvCapture** capture)

� Save a frame into a video file
CvVideoWriter* cvCreateVideoWriter(const char* filename,

int compression, double fps, CvSize size, int is_color)

62

int cvWriteFrame(CvVideoWriter* wrter, const IplImage* image)

Example:

� Releasing the video writer
void cvReleaseVideoWriter(CvVideoWriter** writer)

Example 2

� Create a OpenCV program that reads an video from disk and displays it on
the screen

63

Example 2

64

Once we have displayed the frame, we then wait
for (1/30) 33 ms (if the frame rate is 30 fps) If
the user hits the Esc key (ASCII 27), then we will
exit the read loop. Otherwise, 33 ms will pass
and we will just execute the loop again.

Sidebars

As we’re working with videos, we can add useful graphic tools, like sidebars or
trackbars..

� This function create a trackbar and attach it to the specified window
int cvCreateTrackbar(const char* trackbarName,

const char* windowName, int* value, int count,

CvTrackbarCallback onChange)

65

CvTrackbarCallback onChange)

Parameters:

trackbarName – Name of the created trackbar.

windowName – Name of the window.

value – Pointer to an integer variable, whose value will reflect the position of the
slider. Upon creation, the slider position is defined by this variable.

count – Maximal position of the slider. Minimal position is always 0.

onChange – Pointer to the function to be called every time the slider changes
position. This function should be prototyped as void Foo(int); Can be NULL if
callback is not required.

Example 3

� Create a OpenCV program that reads an video from disk and displays it on the
screen and add a sidebar showing the frame number

66

Example 3

67

Example 3

68

A simple image transformation

We saw that images can be represented with different colorspaces.
OpenCV allows to convert an image from one color space to another with the
function:

void cvCvtColor(const CvArr* src, CvArr* dst, int code)

Parameters:

69

Parameters:

src – The source 8-bit (8u), 16-bit (16u) or single-precision floating-point (32f) image

dst – The destination image of the same data type as the source. The number of
channels may be different

code – Color conversion operation, i.e.
CV_RGB2GRAY

CV_GRAY2RGB

CV_RGB2HSV

CV_HSV2RGB

…

Example 4

� Create a OpenCV program that reads a RGB video from disk, displays it and
save it in gray levels.

70

Example 4

71

Example 4

72

Practice 1/1

Write a program which:

� reads a RGB image;

� shows the original image;

� shows the R,G,B channels on 3 different images;

� transform the the image in HSV colorspace;

shows the H,S,V channels on 3 different images;

73

� shows the H,S,V channels on 3 different images;

� save each channel separately

Cue: see cvSplit

Practice 1/2

Write a program which:

� gathers frames from a webcam

� shows the original frame;

� transform the frame in gray-level colorspace;

� shows the gray frame on a different window

(save the gray video for 5 seconds)

74

� (save the gray video for 5 seconds)

Cue: use

CvCapture* capture = cvCaptureFromCAM(0);

Instead of cvCaptureFromFile

Resize

� We often encounter an image of some size that we would like to convert to an
image of some other size. We may want to upsize (zoom in) or downsize (zoom
out) the image.

� Zooming requires two steps:

1. the creation of new pixel locations;

2. the assignment of gray levels to those new locations.

75

� Suppose that we have an image of size 128*128 pixels and we want to enlarge it 8
times to 1024*1024 pixels. How can we assign intensity values to the “new” pixels?

The easiest way is called nearest neighbor interpolation: we look for the closest pixel
in the original image and assign its gray level to the new pixel in the grid.

Although nearest neighbor interpolation is fast, it has the undesirable feature that it
produces a checkerboard effect that is particularly objectionable at high factors of
zooming.

Resize

� Example:

Images zoomed from 128*128, 64*64, and 32*32 pixels to 1024*1024 pixels, using
nearest neighbour gray-level interpolation

76

Resize

� A slightly more sophisticated way of accomplishing gray-level assignments is bilinear
interpolation (linear interpolation of 2 variables) using the four nearest neighbors of
a point.

77

Resize

� OpenCV

78

EXAMPLE

Practice 1/3

Write a program which:

� reads a RGB image;

� shows the original image;

� changes image size (zooming in and out) with both the nearest and the
bilinear interpolation methods;

� shows the new images;

79

� shows the new images;

� save all images

Which sizes and methods are acceptable for you?

Region Of Interest (ROI)

Regions of Interest have a great practical importance, since in many situations they
speed up computer vision operations by allowing the code to process only a small
subregion of the image.

Given a rectangular subregion of interest in the form of a CvRect, you may pass an
image pointer and the rectangle to cvSetImageROI() to “turn on” ROI; “turn off ”
ROI by passing the image pointer to cvResetImageROI().

80

ROI by passing the image pointer to cvResetImageROI().

Example: we want to load an image and modify a region of that image.

1. read an image;
2. set the x, y, width, and height of the intended ROI;
3. increment all of the pixels in the region with a specific value;
4. release the ROI with cvResetImageROI()

Example 5

� Create a OpenCV program that reads an image, convert it in gray levels and
add 150 to the gray levels of a Region Of Interest with
x = 50
y = 50
width = 100
height = 200

81

Example 5

82

Example 5

83

Practice 1/4

Write a program which:

� reads a RGB image;

� shows the original image;

� sets a ROI;

� shows the RGB ROI on a new window;

transform the whole RGB image in gray-level colorspace;

84

� transform the whole RGB image in gray-level colorspace;

� saturates ROI (255);

� shows the new ROI on a new window;

� shows the new image with the white ROI on a new window;

� saves all images

Drawing

Something that frequently occurs is the need to draw some kind of picture or to draw
something on top of an image obtained from somewhere else.

� Draw a line segment connecting two points
void cvLine(CvArr* img, CvPoint pt1, CvPoint pt2,

CvScalar color, int thickness=1, int lineType=8, int shift=0)

Draw a rectangle

85

� Draw a rectangle
void cvRectangle(CvArr* img, CvPoint pt1, CvPoint pt2,

CvScalar color, int thickness=1, int lineType=8, int shift=0)

� Draw a circle
void cvCircle(CvArr* img, CvPoint center, int radius,

CvScalar color, int thickness=1, int lineType=8, int shift=0)

� Draw an ellipse
void cvEllipse(CvArr* img, CvPoint center, CvSize axes,

double angle, double start_angle, double end_angle,

CvScalar color, int thickness=1, int lineType=8, int shift=0)

Writing

OpenCV has one main routine, that just throws some text onto an image. The text
indicated by text is printed with its lower-left corner of the text box at origin and in
the color indicated by color.

� Initialize font structure
void cvInitFont(CvFont* font, int fontFace, double hscale,

double vscale, double shear=0, int thickness=1,

int lineType=8)

86

int lineType=8)

� Draw a text string.
void cvPutText(CvArr* img, const char* text, CvPoint org,

const CvFont* font, CvScalar color)

Drawing and Writing

Example: draw a red rectangle corresponding to the ROI and write the blue text “My
ROI” close to the rectangle .

87

Mouse management

A typical callback mechanism is to enable response to mouse clicks.

We must first write a callback routine that OpenCV can call whenever a mouse event
occurs.

� Create a Callback
void CvMouseCallback(int event, int x, int y, int flags,void*

param)

88

param)

Mouse management

� Create a Callback
void CvMouseCallback(int event, int x, int y, int flags,void*

param)

x and y - coordinates of the mouse event

param - void pointer that can be used to have OpenCV pass in any additional
information in the form of a pointer to whatever kind of structure you need

89

information in the form of a pointer to whatever kind of structure you need

Mouse management

� Register the callback
void cvSetMouseCallback(const char* window_name,

CvMouseCallback on_mouse, void* param = NULL)

window_name: name of the window to which the callback will be attached

on_mouse: the callback function

90

param: allows us to specify the param information that should be given to the
callback whenever it is executed. This is the same param we were just discussing in
regard to the callback prototype.

Example 6

� Create a OpenCV program that allows to use a mouse to draw boxes on the
screen

91

Example 6

92

Example 6: Mouse events

93

HighGUI: no button! �

� Unfortunately, HighGUI does not provide any explicit support for buttons.
We can easily use sliders (trackbars) that have only two positions (ON / OFF)

� Example 7:

94

Example 7: a trackbar to create a “switch”

95

Practice 1/5

Write a program which:

� loads a large image;

� reduces the image size (1/2);

� shows the image on a window;

� selects the ROI with the mouse clicks;

shows a green rectangle corresponding to the selected ROI

96

� shows a green rectangle corresponding to the selected ROI

� shows the ROI on a new window;

� writes a text box in the ROI saying ROI size “# x #‘, with the
corresponding values;

� saves the images

Cue: see itoa

Practice 1/6

Write a program which:

� asks for the colorspace transformation;

� gathers frames from a webcam;

� prints the frame number on the image;

� changes the frame colorspace;

shows one channel of the new colorspace on a new window with a

97

� shows one channel of the new colorspace on a new window with a
trackbar indicating the time (in seconds);

� save the gray video for 5 seconds

See you after lunch

